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Abstract We give a proof of transient fluctuation relations for the entropy production (dis-
sipation function) in nonequilibrium systems, which is valid for most time reversible dy-
namics. We then consider the conditions under which a transient fluctuation relation yields
a steady state fluctuation relation for driven nonequilibrium systems whose transients relax,
producing a unique nonequilibrium steady state. Although the necessary and sufficient con-
ditions for the production of a unique nonequilibrium steady state are unknown, if such a
steady state exists, the generation of the steady state fluctuation relation from the transient
relation is shown to be very general. It is essentially a consequence of time reversibility and
of a form of decay of correlations in the dissipation, which is needed also for, e.g., the exis-
tence of transport coefficients. Because of this generality the resulting steady state fluctua-
tion relation has the same degree of robustness as do equilibrium thermodynamic equalities.
The steady state fluctuation relation for the dissipation stands in contrast with the one for
the phase space compression factor, whose convergence is problematic, for systems close to
equilibrium. We examine some model dynamics that have been considered previously, and
show how they are described in the context of this work.
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1 Introduction

Steady state fluctuation relations provide information about the probability distribution of
time averages of certain phase variables for systems in nonequilibrium steady states: they
express the ratio of the probabilities of observing positive and negative values of time av-
erages of such variables. These relationships have received much attention over the past
decade (see e.g. [1-4]). In fact, they are among the few exact results regarding nonequilib-
rium systems; close to equilibrium they lead to the Green—Kubo relations for linear transport
coefficients [5]; they provide information about fluctuations in nanoscale systems and they
show how irreversibility can emerge from time reversible dynamics.

The first such fluctuation relation (FR) for a nonequilibrium particle system was given
in Ref. [6], in 1993. It concerned fluctuations of time averages of the energy dissipation
or equivalently the phase space contraction rate, for an isoenergetic shearing interacting
particle system. In the isoenergetic dissipative system of Ref. [6], the instantaneous energy
dissipation equals the instantaneous phase space contraction rate. The form of the relation
was the following:

PiA) _ s
P(—A)

where A and —A were the time averaged values of the dissipation on steady state trajectory
segments of duration t, and P;(A) is the steady state probability of observing the average
value A (with some tolerance), in a time 7. In analogy with the periodic orbit expansion
for dynamical systems [7-9], the relation was derived heuristically using the “Lyapunov
weights” in the long t limit, and was not expected to work at short 7’s.

Paper [6] motivated a number of works, in which various derivations of formulae for-
mally similar to (1) were given for different systems, although for non-isoenergetic systems
the phase space contraction rate and the energy dissipation are no longer instantaneously
equal. Beginning in 1994, a series of papers by Evans and Searles focused on the fluctua-
tion properties of the “dissipation function” £2, cf. Refs. [1, 10-16], while Gallavotti and
Cohen, in 1995 et.seq., considered the fluctuations of the time-averaged phase space con-
traction rate, — A, under the assumption that the dynamics is time reversible, transitive and
Anosov or that the system satisfies the Chaotic Hypothesis (i.e. although the dynamics is
not Anosov, for the purposes of this FR, it behaves as if it was Anosov), cf. Refs. [17-20].
Various generalizations and extensions of these relations have been produced by different
authors, see e.g. Refs. [12, 21-32].

In the literature, FR’s which superficially resemble the form of (1), are often collectively
referred to as the Gallavotti-Cohen Fluctuation Relations, or instances of the Gallavotti—
Cohen symmetry, although they may have subtly different meanings. Therefore, for the sake
of clarity, we refer to the relation for the phase space contraction rate of Refs. [6, 17, 18], as
the A-FR, while we refer to the relation for the dissipation function of Refs. [1, 6, 10, 11],
as the £2-FR. In the cases in which 2 = — A, like those of [6], the two relations have the
same content.

£2-FR’s have been widely used and tested numerically and experimentally, for various
transient [10, 11] as well as steady state systems (see e.g. [2, 13, 16, 21, 32-39]). Al-
though the transient §£2-FR’s have been proven more than a decade ago, beginning with
Ref. [10, 11], there has been some question over the derivation of the corresponding steady
state relations [40]. Therefore, we present a derivation of the §£2-FR’s which is more thor-
ough than the ones that have appeared thus far in the literature [1]. The purpose is to shed
light on the mechanisms which allow the §2-FR’s to hold, and which may be used to better
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understand properties of nonequilibrium systems. In particular, we are interested in non-
equilibrium steady states where the dissipation function takes the form

R=X=—-JVF,/(kgT), 2)

where J is the dissipative flux in the system of interest, V is the volume of the system of
interest, kp is Boltzmann’s constant, T is the equilibrium thermodynamic temperature of the
thermal reservoir with which the system of interest is in contact, and X is the generalized
entropy production (or energy dissipation) induced by the dissipative field F, applied to the
system of interest [1, 13]. For the equality £2 = X' to hold, we require that the unthermostat-
ted (i.e. adiabatic) field dependent dynamics preserves phase space volumes instantaneously,
and that the initial distribution of phases could in principle be generated by a single (ex-
ceedingly long) zero-field phase space trajectory. Systems that satisfy the condition of the
adiabatic incompressibility of phase space are called AIT" in Ref. [41] (cf. Appendix 1).

When referring to steady state systems, we only consider systems which relax to a unique
steady state. The necessary and sufficient conditions for the system of interest to relax to a
unique steady state are unknown. Certainly, it is known that under certain circumstances
nonequilibrium steady states are not possible [42]. If the systems of interest are near equi-
librium, where the thermodynamic notions of temperature and entropy can be used, then as
is shown in the theory of linear irreversible thermodynamics the time or ensemble average
of £2 is equal to leading order in the dissipative field, to the average so-called spontaneous
entropy production rate [43]. Outside this local equilibrium regime, the entropy production
rate cannot be defined. While the notions of a thermodynamic temperature, thermodynamic
entropy or an entropy production rate cannot be defined outside the local thermodynamic
equilibrium regime, in a nonequilibrium steady state the ensemble or time averaged phase
space contraction rate is equal to the steady state time derivative of the fine grained Gibbs
entropy. The fact that the fine grained Gibbs entropy is not constant in a steady state (unlike
the pressure or the energy), is the reason why it is so difficult to attach meaning to standard
thermodynamic quantities such as temperature, in steady states outside the local equilibrium
regime.

In the derivation of a relation like (1), one may follow different approaches. The one
which has led to the A-FR requires the full knowledge of the physical measure of the dy-
namics, which is then assumed to be of the Anosov type, hence to have a Sinai—Ruelle—
Bowen (SRB) measure, usrp [17, 18, 44]. This is the mathematical approach, which aims
to identify the class of dynamical systems for which a relation like (1) can be rigorously
obtained, regardless of the physical relevance of such dynamical systems or of the quantities
appearing in (1). How far one can go along this line and which other condition could replace
the Anosov condition are highly nontrivial and interesting mathematical questions, which
do not have an answer, at present.

The explicit knowledge of the physical measure gives the maximum possible amount of
information about the phase space distribution: all statistical properties of the dynamics can
be obtained from it. However, if one is only interested in why the FR holds, less detailed
knowledge of the phase space distribution is likely to suffice, and special features of the
dynamics, such as the Anosov property, need not play a role. This may explain why many
physical systems have an observable which obeys a relation like (1). As a matter of fact,
hardly any particle system of physical interest is of the Anosov kind, therefore it is interest-
ing to ask whether a physical system obeying a fluctuation relation does so because it shares
certain properties with Anosov systems, or whether it obeys such relations for other rea-
sons. To investigate this question, which is part of the physical approach, we follow Evans
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and Searles [13], since they do not require the invariant phase space probability measure to
be explicitly determined. This will lead to transient fluctuation relations for X' as well as for
many other functions of phase, including A. If ¢ is the observable of interest, we speak of
¢-FR.

The purpose of the present paper is to understand why the X'-FR holds for many phys-
ically interesting systems, and why this can be observed within physically relevant time
scales. This is useful to further develop the present theory.

Remark This issue is not completely unrelated to, but is quite different from the identifica-
tion of the class of dynamical systems which allow a rigorous mathematical derivation of
the A-FR. One may say that the two issues are as much related as Khinchin’s approach to
the ergodic hypothesis [45] is related to ergodic theory.

In Sect. 2 we derive transient FR’s for time reversal invariant dynamics. These relations
are called “transient” because they describe the time evolving statistics of an ensemble of
finite time averages of given phase functions. They hold under very general conditions,
similarly to other transient relations, like the Jarzynski and the Crooks relations [46, 47].
In particular, the transient relations hold even if a steady state with positive and negative
fluctuations of the observable under consideration is not reached. If a fluctuating steady state
is not reached, the transient relations hold and express properties of evolving ensembles of
phase space trajectories, while the Anosov structure cannot characterize the dynamics.

In Sect. 3, we show how the results of Sect. 2 can be used to derive asymptotic FR’s
for reversible systems, under the technical assumption that §2 is bounded. In Sect. 4, the
decay of the §2-autocorrelation is shown to be sufficient for the steady state £2-FR to hold.
Furthermore, in isoenergetic systems which satisfy AIT" (e.g. systems whose adiabatic evo-
lution is Hamiltonian), the phase space contraction rate and the dissipation function are
instantaneously equal. In these cases, the predictions of the A-FR and of the §£2-FR can be
compared directly, and the £2-FR at high dissipation implies a different behavior from the
one predicted by the A-FR under the axiom-C condition of Ref. [48], but which agrees with
the results of [16, 49]. This is possible because the conjectures of [48, 49] are not necessarily
verified by particle systems. The approach followed in Sects. 2, 3 and 4 leads to a number
of ¢-FR’s and to various other relations. In Sect. 5 we discuss our results. Appendix 1 con-
tains a detailed description of the dissipation function for the common cases. Appendix 2
discusses the problem of axiom-C systems and the decay of correlations, and explains that
our approach is based on exact relations, which are then valid even when the conditions of
Sect. 4 are not met. Our conclusions are that:

e to satisfy the steady state £2-FR, the time reversal invariance of the dynamics and the de-
cay of the §2-autocorrelations, with respect to the initial (non-singular) probability mea-
sure, suffice. This decay of correlations is not the one characterizing the steady states of
axiom-C systems, which concerns all observables and is referred to the invariant (singu-
lar) measure.

e For £2 to equal X, hence to obtain a steady state X-FR, AII" must hold and the initial
distribution of phases must in principle be obtainable form a single field free (F, = 0)
phase space trajectory. In such a case, we say that the initial distribution is ergodically
consistent with the field free dynamics [1].

e The £2-FR’s avoid the difficulties encountered by the A-FR close to equilibrium. The
A-FR, requires ever longer convergence times, the closer the steady state is to equilibrium
[5, 13, 33-35, 50]. The £2-FR’s hold in a range which does not shrink for decreasing
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fields, and are verified within the physically relevant (£2-autocorrelation) times, both for
systems far and close to equilibrium.

e The direct derivation of the steady state X'-FR’s avoids the difficulties connected with
obtaining a relation for the energy dissipation via the A-FR, justifies the convergence
rates, and leads to new testable relations. However, the class of dynamical systems which
enjoy the required decay of correlations remains to be identified.

e It goes without saying that the steady state relations require that a steady state is reached
(hence that the correlations decay with respect to the initial state), and that fluctuations
of opposite sign in the dissipation function should be observable. If such a steady state is
not attained or if the steady state is sufficiently far from equilibrium that negative values
of the dissipation function cannot be observed, the steady state FR’s cannot be applied,
but the transient FR’s (including their asymptotic forms) remain valid as properties of the
evolving ensembles, because they only require time reversibility.

In this sense, our relations are like the usual thermodynamic relations which are extraordi-
narily general, being independent of the nature of interparticle interactions and dynamics.
All that is required of the dynamics is that it should be time reversible and, for steady state
FR’s, that the autocorrelation of £2 decays and that the steady state is unique.' Furthermore
our derivation explains why the £2-FR is verified within times which can be expressed in
terms of material properties.

2 Transient Fluctuation Relation

Because we will be interested in thermodynamic systems which possibly relax to a nonequi-
librium steady state, our dynamics will consist of the Hamiltonian dynamics of an N-particle
system of interacting particles to which a dissipative field is applied. The resultant equations
of motion may or may not be derivable from a Hamiltonian [41]. In order for such a system
to be capable of relaxing to a nonequilibrium steady state, the system must be allowed on
average, to loose heat. This can be accomplished by surrounding the system of interest with
thermostatting walls which serve two purposes: to confine the system of interest and also to
remove dissipative heat generated (on average) by the dissipative field applied to it. It has
been shown that any loss of heat from a Hamiltonian system requires that the dynamics over
the degrees of freedom in the system of interest is no longer volume preserving [51, 52].
These details are explained further in the Appendix. In what follows however, we will con-
sider a more general setting that is time reversible and does not necessarily preserve the
phase space volumes.

Given the phase space M of a particle system, consider a probability measure p on M,
with density f, i.e. du(I") = f(I')dI" for every point I" € M. The measure p does not
need to be produced by any dynamics on M, although it could represent, for instance, the
initial equilibrium distribution of the system. Further, given a (sufficiently well behaved)
phase function ¢ : M — R, the probability that it takes values in the interval (a, b) C R,
according to u, is given by

/ du(r) = f FrYdr 3
®la,b) ®la,b)

IThis is analogous to the equilibrium thermodynamic requirement of a unique allotrope.
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where
Plap:={I" e M:¢I") € (a,b)}, 4

is the set of points of the phase space for which ¢ takes values in (a, b).?

Let ST : M — M be the time evolution operator, which takes any point I" € M to its
evolved image S7I", under some dynamics applied for the time 7.> We refer to time reversal
invariant dynamics, i.e. dynamics which obey

iSTr=8"%Ir forall’ e Mandallt e R 5)

where i : M — M, which obeys ii = i?> = identity, is an involution representing the time
inversion operator (e.g. i I" =i(q, p) = (q, —p)) for the dynamics. Consider the phase func-
tions defined by:

to+1

_ 1 -
Grp.to+e(I') 1= ;/ P (S*IN)ds, Gro.to+2 (1) 1= TPy s (1),

fo

forty, Tt €eR; I' e M. (6)

Take § > 0, 1ty = 0, introduce the sets A;{ =(A—-65,A+6),A; =(—A—-65,—A+6) and,
for an odd phase variable ¢ (i.e. ¢ (i) = —¢(I")), consider the ratio

W @oclsr) I ST

wGoclas) Sz, fUDATT

@)

i.e. the probability according to u that ¢y, € Af, divided by the probability according to
the same u that (]30,Z € Ay.

To compute this quantity, observe that the points of M which fall in ¢ .| Ay are those,
and only those, obtained by doing the time inversion of the evolution, for a time 7, of the
points in (]30,, |A5+, ie.

&0,r|A5— zisrq;(),ru;- (8)

Indeed, take any I" € ¢_>0,T| A5 invert it and evolve it backward for a time t; the resulting
point Y = S77i I is the initial condition of a trajectory segment of duration T over which
one obtains ¢y ; € A}, hence Y € ¢ | At Moreover, there are no points of i S* ¢ | At which

do not lie in qﬁo,, | ,— - This allows us to compute the denominator of (7) in terms of qﬁol | A
through the coordinate transformation

ar t )
I'=iS"X, whose Jacobianis J = ‘E‘ =exp(/ A(SAX)ds> =X (9)
0

2¢|(a,;,) is assumed to be p-measurable, like all sets in this paper.

3In particular, the dynamics could be determined by the equations of motion of a particle system subjected
to a dissipative field F,, and to a deterministic thermostat meant to remove the excess energy pumped into
the system by the field, so that a nonequilibrium steady state can be reached [41]. In this case, I = (q, p)
denotes the generalized coordinates and momenta of all the particles comprising the system.
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Here, the quantity A is the phase space expansion rate (the opposite of the contraction rate)
which, for dynamics I" = G(I") on M, is defined by

A=V -T'=V-GI). (10)

This leads to:

J

A necessary condition for the derivation of the transient fluctuation relations is that

J

This condition is satisfied by appropriate choices of w, for the given S*. For example,
could be selected to be the probability distribution generated by the field-free (equilibrium)
dynamics of a particle system, S§ say, for which S* is the nonequilibrium dynamics; i.e.
1 could be generated by S, obtained by setting the dissipative field of the nonequilibrium
dynamics S7 to zero. In fact, this selection ensures that £ (i S*I") # 0 whenever f(I") #0.*
Then, assuming that f is also time reversal invariant® (i.e. that f(I") = f(iI") for every
I" € M) the ratio of probabilities (7) becomes:

f(rdr = /

¢0,I|Agr

. ar .
f(zSTX)’—’dX:/ FESTX)e0:®gx. (11)
dX F

0,71 ,— 0,7 4+
As As

f(Ir)dIr #0 forall A for which / F(rydr 0.

0,7l 4= $0,7l ,+
A5 As

w(oclay) Jav.1, FCDYT
w@oclas) S, FESTX)eXp(A0(X))dX

fqg(),t [+ f(F)dF
A

B fd;(),r|A+ f(SZX) eXp(AO,T(X))dX '

12)

The restriction on the choice of u for the given S7, i.e. that f(iSTI") # 0 whenever f(I") #
0, is referred to as ergodic consistency of f with S¥ [1]. The main quantity used below can
now be introduced.

Definition The time averaged dissipation function Q,O,,OH : M — R, for a time reversal
invariant phase space probability density f is defined by [1]:

_ 1 h+t 1 f(Sto F) to+T

Q;(),z()+r(F) = (8 ds == —I:th —/ A(SSF)dsi|
7 J, cLrasery T,

_ 1[1 f(s°r)

—|1n W - A10,10+r(1_')i| (13)

provided f is ergodically consistent with S’. The instantaneous dissipation function §2(I")
is obtained from differentiation with respect to T of £2 ;, for sufficiently regular f.

4Here, it is assumed that equilibrium dynamics corresponds to no net dissipation, and that typical trajectories
explore all the phase space.

5The assumption that f be time reversal invariant is not necessary for our main results. A different choice
will simply result in a alternative definition of the dissipation function, [1]. However, if u is selected to be an
equilibrium measure, then this condition is guaranteed, and relying on it makes the calculations more elegant.

@ Springer



1344 J Stat Phys (2007) 128: 1337-1363

Here the condition of ergodic consistency plays an important role, although it may not be so
evident in general. Indeed, given a particle system with certain conserved quantities under
its equilibrium dynamics S, the nonequilibrium dynamics S* may not conserve the same
quantities, and a trajectory S*I" may wander outside the support of 1, making the corre-
sponding £2 unusable in the following derivations. Thus, in physical applications f must be
chosen with care, although many phase space densities are acceptable from a mathematical
point of view. Using (13), (12) implies what has been referred to as the

Transient ¢-FR:

M(‘Z;O,Z|A;) féo,T\A; funHar

W Goclin) gy, SXPI=20: 010X

=(exp(=200))5) e (1D

Here (exp(—$20.7)) Fo.ceAt is the ensemble average of exp[—$2y .(X)], over the set of tra-

jectories which satisfy the constraint that q_ﬁo,, € A; [1, 12]. In the case that qS(,,, = QO,T the
fluctuation relation assumes the particularly elegant form, called

Transient $2-FR:

M(‘QO,T|A§')

—— = (exp(—$20.0)) 5, i =€ ATEOAI (15)
1(0,c14-) oreay

Here, ¢ is_ an error term of magnitude |¢| < §, which depends on §, A and 7, and appears
because £2 . is not necessarily constant and equal to A. Therefore, (8, A, 7) - 0asé — 0,
for all A for which the ratio of (15) exists [1, 10, 11].

Remark Different choices of f are possible, which lead to different £2-FR’s. In particu-
lar, equilibrium probability densities of many-particle systems which obey AII" lead to
an §2-FR which concerns the entropy production, or the energy dissipation rate X (cf.
Appendix 1). The uniform density in a compact phase space, f(I") = 1/| M| say, yields
2 = —A. A density such that fdI" approximates as accurately as desired the (possibly
singular) steady state measure is also allowed.

The above relations are called “transient” because, independently of the length of 7, they
express properties of the measure x and not of the possible steady state. The time 7, indeed,
enters the ¢-FR only in the definition of the observable ¢y ;, and not of the phase space
probability density. Equations (14), (15) are exact and do not need any limit to be taken
either on 7 or on §. As the calculation shows, the only properties that are required for (14),
(15) to hold are that the dynamics S* be time reversal invariant, to ensure that, for odd ¢,
—A can be observed if A can, and that f(iSTI") # 0 for any I" for which f(I") # 0. The
range of A’s that can be observed depends both on ST and ¢.

If the initial distribution can be generated by a single field free phase space trajectory,
and AT holds, the dissipation function §2 takes the form given in (2) and at equilibrium
(where F, =0), £2 =0, hence

M(‘Z;O,'['A;) 0n—1
w@orli) @ peenr =1 (16)
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as it should be for the equilibrium measure w, and for any odd variable ¢ (for instance,
¢ could be the instantaneous current J, which does not need to vanish at equilibrium, al-
though its mean certainly does). For symmetric intervals (—4§, §), one also has A = 0 and
can write

w(@ocl—5.5)

(o, l(=5.6)) 1. hence (e™7)g (55 =1. a7
,T1(—0,

In the limit that § tends to infinity, the second equality in (17) tends to a full phase space av-
erage, and produces the NonEquilibrium Partition Identity (also referred to as the Kawasaki
normalization)[11, 41]. This identity can be used to test the accuracy of the numerical sim-
ulations, and has even been used to calibrate experimental equipment [36-38]. The highly
asymmetric convergence of numerical estimates to unity means that estimating the statistical
uncertainty of experiments is problematic without this relationship [11]. If the dissipation
function is bounded (i.e. |§2| < §2*, for some £2* > (), one obtains

e M@l

< —- <o, (18)

(o, Ay )
for all odd ¢. Because different dissipation functions are allowed and the above ratio holds
for all of them, a sharp bound can be given for all ¢ and independently of the physically
relevant dissipation function, by taking the smallest possible §2*. This constitutes a new
prediction, which may be interesting to test in nonequilibrium systems.

3 Asymptotic Fluctuation Relations

In order to derive steady state fluctuation relations, one may develop further the transient
¢-FR’s obtained in Sect. 2, considering the time averaged phase variable ¢y, ;4. (cf. (6)),
where the time averaging begins at a time #y > 0, rather than at time 0:

M((itq,to-%—r |A;r) fqgfov'o“‘/\gr fanar
M(&IOA,f()JrTlAE) fd_"oJoﬂ‘ f(F)dF.

A5

19)

Here, (]3,0.,0+T|E ={reM: qS,O,,OH (I") € E} is the set of all phase points which are initial
conditions of trajectory segments of duration #y + t, over which 43,0,,0+f takes values in E,
and E = A or A . The calculation of the ratio (19) requires that the points of M lying in
qg,o, o+ A5 be identified. To do that, consider a trajectory of length t = 21y 4- 7, and take W in

Proiprelap- Then, let X = SOW, ¥ = S0 W, Z = §207°W = S'W, and ['=iZ = iS'W

(see Fig. 1). The trajectory segment between i Y and i X produces the opposite of the average
produced between X and Y, in the time interval (¢, o + 7), so that

¢t0,to+r|Ag = iSt¢z[),to+r|A§r (20)

and, as in the previous section,
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Fig. 1 Schematic diagram X Y
illustrating the time-reversible z
evolution of two points in phase
space that are related by a time
reversal mapping, i. If the W
average of ¢ between X and Y is
A, the average between /Y and time
iXis—A ! I
0 to to+T 2to+T=t
iW
I'=iz
iy iX
o |dr
) fNHdr = : fUS'W)|—|dW
¢zo.r0+r|A5— Pr1g.10+T \A;r aw
:[ F(S"W)exp(Ao,(W)dW 21
¢to,t0+r | Agr
where J = |j—vrv| =exp[Ao,(W)] and we use time reversal invariance of f.

Note that the integral defining J is along the full trajectory of duration 7, although ¢_>,0, fo+t
concerns only one of its parts of duration t. From the definition of £2, (see (13)), one
obtains:

W)
Ag, (W) =In % — §20,(W) (22)
and
/ frdr = / F(W)e 20 M gw. (23)
¢_>10,10+r|A5— @O,zoﬂlAg—
The probability ratio of (19) can then be written as:
_ a =20,/ (W)
M(qj’OJOJrT'A;) |:I¢ZO.IO+T|A; - dW:|l (exp(—$£20,))>" (24)
= = = (exp(—$£20,))-
I’L(d)t(),t()+f |A(;) fq;’o»’()‘*'fl;ﬁ’ f(W)dW t ¢T()v1()+r EA;
8

which is the inverse of the average of exp(—$2y,), conditioned to the constraint (;_5,0, o+t €
A;; and the special case ¢ = 2, yields

M(Qto,[o+r|A;)

_ = —2o N3 25
B~ PR (25)

y-
Lig.p+r€A;

The right hand side of this expression can be written as:

—1 _ lA+e(8,10,A,0)]7 1 ,— 820,15~ 214729 +7 |~
ex £2 - =e e 0o tT. 20T )2 . 26
(exp( 0’1))9'(»’0“6’4; ( ).(2,(),,()“@4; (26)
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Taking the logarithm, and dividing by t one then obtains:

1 H(Qro,ro+r|A;)

1
n _ =A+¢e(,1,A,T)— — ]n(e_90,10_910+r,210+r> - 27)
T M(Qto,t0+r|A8—) T

+
Lig.ag+ A5

where the correction term & depends on §, #, A and 7 and, like in Sect. 2, |¢| < §. This result
is exact, and holds for all 7y, T and 8, and for any A for which both the probabilities in the
left hand side of (27) do not vanish. It rests only on the time reversibility of S’, and on the
ergodic consistency of f with S’.

Equations (24) and (27) are valid for all 7, hence also in the limit T — oo, but remain
transient relations because no matter how large t is; they refer to the initial measure wu,
even if the dynamics makes u evolve into u.. However, the above derivation suggests that
for systems that reach a steady state, it may be possible to derive steady state FR’s from
the transient FR’s. The idea is that for sufficiently large times ¢y, (24), (27) should concern
trajectory segments of length t distributed according to the invariant measure, or very close
to that. Furthermore, taking t long, and § small, should make the last two terms in (27)
negligible.

To investigate this possibility, we firstly transform (24) and (27) by transferring the time
evolution up to #, from the sets of phase space points J),Oioﬂ a1~ to the phase space proba-
bility distributions. Given an initial phase space probability density fy, and the correspond-
ing probability measure (i, we denote their evolved counterparts after a time #, by f;;, and
44, TESpectively:

iy (SOE) = uo(E)  or equivalently fio(X)dX = / JfoW)dW (28)
SOE E

for every #p € R and E C M, where S®F is the set of points reached by all points of E
after an evolution of duration f#,. Equations (28) are consequences of the conservation of
probability by time evolution.® Physically, they are an instance of what is referred to as
the Heisenberg—Schrodinger equivalence, while mathematically they are the result of the
coordinate transformations X = S®W and W = S~ X. The Jacobian of this transformation
is given by

ow —1 0
’ X — M0 X) _ fy A Xds _ J2iy AS* X)ds — ¢~ A1p0X) (29)

hence one can write

120 (P 10+ lap)) =[ So(W)dw
b19.10+7l(a,b)
= / fo(ST0X)e A00Mgx (30)
S0 Guy g+ (.
and
MO(&I(),I(H—r |(a,b)) = Mf()(StO(it(],f()+f |(a,b)) = / B ﬁ() (X)dX (31)
Slo¢’()-'()+f|(a.b)

6They merely state that the initial probability of E becomes the probability of the evolved set SOE after a
time 7.

@ Springer



1348 J Stat Phys (2007) 128: 1337-1363

In (30), (31), we could have integrated over any measurable set £, hence, equating (30) and
(31) finally gives:

fio(X) = fo(ST0X)e™ *-000), (32)

This is known as the Lagrangian form of the Kawasaki distribution function [11].7 From
(22), which yields

—A_, o X)= /—fo A(S*X)ds = ln(&) — 20, (X) (33)
o 0 f($70X) e
(32) can be rewritten as
Fo(X) = fo(X)e 200, (34)

and gives the evolution of the phase space probability density fj. This well known exact
result for the time dependent phase space density f;, (X), was first derived for thermostatted
particle dynamics where the dissipation function takes the form given in (2) by Evans and
Morriss in 1984 [53]. Observe that

51y 10+¢ @by = Po.clap) (35)

because ¢ is a phase variable, hence does not explicitly depend on time, and because we
assume the dynamics to be autonomous. Indeed, a point X € $°¢,, ; 1|a,») is the evolution

by a time #, of a point I" for which ¢_>t0,,0+, takes the same value of q_bo,T(X ), i.e.

_ 1 T 1 1+t _
b0, (S°T) = ;/0 G (S (S IM))ds = —/ (S Ids = ¢y 54 (I). (36)

T Ji
Thus, (31) expresses the time evolving probability of the fixed set @o - |(a.5)»

:u/t() (¢ZO,Z |(u4,b)) = :u/t() (Stod_’t(),t()+f |(a,b))- (37)

Provided convergence to the steady state occurs, this equation yields a more and more accu-
rate approximation to the steady state measure of ¢_>OJ l(a,b)> @s to grows, at fixed 7.

Equation (24), which is expressed in terms of the initially chosen phase space probability
distribution, and of evolving phase space sets, can now be given in terms of the evolving
PDF, since

M (Poclat) 1y (S Pyugrelar)  Ho(Pogrelar)

— = = = = . (38)
My (¢0,1’|A3‘) M (ST(’¢ro,ro+r|A5—) M0(¢t0,t0+r |As_)
This produces what we call
¢-FR:
H’I() (d_)o.‘['A;’) < ( Q ))_1 (39)
—— = (exp(— 7 .
o (¢o.- |A5) p 0.1 ¢I0,10+IEA8+

Relation (39) is exact and holds for all_to, T and p_ossible pairs A and — A (whose range must
be determined case by case). Letting ¢ 1, +r = £2;,,,,+- and rearranging, (27) yields the

"This can also be written, fi,(SOW) = fo(W)e_AO”o(W),
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$2-FR:
1 1o (Q0cl40) 1
i A e (8, A,7) — — Infe M0 L (40)
T MzO(QO r|A ) T ol

where the conditional ensemble average in the last term is computed with respect to the
initial distribution f.

Let us consider some direct consequences of the above relations. For A =0, 6 > 0, 1,
T € R, and any odd ¢, the conditional average of (39) yields

i (Bo.c) (s, 8)

41
Lty (Do« |(—5,a)) @b

(exXp(=520.) 3y 1o +ce(-0.8) =

which, in the § — oo limit, leads again to the NonEquilibrium Partition Identity (17), for
the full ensemble average.
Taking A = 0 in (40), one obtains

(e_go’lo_gtoﬂ"hoﬂ)-(72;0_;(”,6(76,5) — es(B,tO,A=0,r)r (42)
which shows that this particular conditional average is uniformly bounded in #y, and tends
to 1 when § — 0, at fixed t. Equation (41) with ¢ = §2 differs from (42) because of the
integration times in the argument of the exponential function. For fixed § and t, such that
8T < 1, one can write

— 2010 —,
(e 0,10 ’OH’Z,OH)Qto,to+r6(—5~5)%1’ 43)

even for #y) — oo, which is interesting for the validity of the steady state £2-FR. Indeed, the
last term in (40) ought not to dominate over the others, if the steady state £2-FR is to hold.
Exchanging the roles of A} and Aj in (40), one obtains

es(zs,to,A.t)+s(5,t0,—A.r)
=201 = Rtg+1.219+7
e (1o T4l t T2l = - = 44
( >Q,O,to+rsA5 (6790,t0*910+1,210+1) - 4 “4
.Q,OYtOJrfeAr;

for any § > 0.

One last property that is worthwhile to consider is the following asymptotic result, which
is particularly close to a steady state FR. As it happens in many situations of interest, let |$2|
be bounded by some £2* > 0, so that:

| ln(e*QU,zO*QxOH,ZxOH) - | < 2682* (45)

Q19,19+t EA,}"

for all 7. Then, taking § < y, which implies |¢| < y, and

*

2
(o) = —— 5 T (1o), (46)

one obtains the following

2--FR:
1 e (820, 0 ay)

A—y=<lm —In———<A+y. @7
=00 T(t) M:(-Qof(z)h)
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Recalling the connection between §2 and the physical dissipation, which holds under proper
choices of the initial f, the above condition can be written as
2ty  J*F,V
Y — 1) k B T

(43)

where J* is the maximum of the flux. This shows that, differently from the case of the steady
state A-FR, the convergence time of the §2,.-FR does not increase when the dissipative field
tends to O; to the contrary, it may decrease.

As in the transient case, an asymptotic ¢-FR holds for A in a range which depends on
the dynamics and on the observable, but for large t it remains close to (—£2%, £2*). Indeed,
one has

_2t+r9*§l] Mz(¢0f|A+) 2z+19* (49)
T T oely) T T

and taking any y > 0 and letting 7 grow, with 7(¢) >> r, one can write

doo-FR:

1 (@orolar)
2 —y < lim — I g gy, (50)
=00 (1) (¢, wola;)
for any odd ¢, and with the smallest £2*, among the upper bounds of the allowed dis-
sipation functions. Because at equilibrium the dissipation function given by (2) is £2 =
—F,JV/kgT =0, one has

- 11 Mro(¢oI|A+) < G1)
Y o)

whatever odd variable ¢ is considered, §2, A or J for instance. This yields the usual equi-
librium symmetry, in the full range of J, not just in 0, and without the need for long conver-
gence times.

Given the dynamics S7, either there is a unique allowed density fo, hence a unique dissi-
pation function 2 or, given a second initial density fo, there is a corresponding Q #Q.1f
this is the case, and the attractor for both f; and fo is the same, one can write

) B o)
(©xP(= 2005, , oent X ——— T (exp(— 2005, oents (52)
0-10 8 I'Ll() (¢0,Z |Ag_) 0-10 8

for large #, all T and all allowed A. Then, as far as the asymptotic fluctuation relations are
concerned, the different dissipation functions are equivalent.

Let us note that (47) does not necessarily imply the steady state £2-FR, even when there
is a single steady state and all initial measures py with density f; are attracted by the same
oo, because the limit in (50) could be singular. Although this is not impossible, it is not the
typical situation of particle systems of physical interest (cf. Sect. 4 and Appendix 2), and
(47) is a result rather close to the steady state £2-FR.

In Sect. 4 we discuss the conditions under which (47) describes the statistics of trajectory
segments sampled from a single steady state trajectory. Before we do this, we note that
whereas in Sects. 2 and 3, the initial distribution f; can have arbitrary form, provided it is
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ergodically consistent with the dynamics considered, a further condition on f; is imposed, in
order to obtain the steady state §2-FR: the decay of the £2-autocorrelation, with respect to fj.
This is necessary for the initial state to relax to a steady state. The further requirement that
the ensemble is not only invariant under S}, but that is also generated by a single trajectory,
has the purpose to avoid the presence of distinct steady states, selected by different choices
of the initial conditions. These states, indeed, would have different properties, and a unique
Lo Would not be possible. For instance, if f; was selected to be a uniform distribution (so
that £2 = —A) and isokinetic dynamics was carried out, a distinct ©, would be expected
for each distinct value of the kinetic energy.

If the system under investigation does not converge to a steady state with positive and
negative fluctuations, there is no need for a steady state relation, but the £2-FR, the ¢-FR,
the §2,,-FR and the ¢,,-FR remain valid for the given ensemble of trajectories.

4 Steady State Fluctuation Relations

We assume the steady state exists and that it is unique. This will not always be the case, for
example if we start from a canonical phase space distribution at time zero and have isokinetic
dynamics subsequently, there will be distinct steady state attractors for each trajectory with
a different kinetic energy. Each of the steady state attractors will have different properties
because they are at different kinetic temperatures. By saying that the steady state is unique
we mean that, apart from a set of measure zero, the statistics generated by each trajectory is
independent of the initial phase, in the relevant equilibrium phase space.

Equations (27) and (40) are both exact, but contain information on the trajectories be-
fore the steady state is reached. To be of practical use in the description of the steady state
fluctuations of the dissipation function, the last two terms in the equation have to be negli-
gible. Therefore, for A # 0, some assumption on the nature of the logarithmic term of (40)
is necessary since, in principle, this term could be of order O (#,/7), and #, should tend to
infinity, in order to reach the steady state, before v does [40]. We argue that, in most cases
of interest, the dynamics of particle systems used to model nonequilibrium fluids satisfy the
following:

Steady state 2-FR For any tolerance y > 0, there exists 8,,, T, > 0 such that

,Uvoc(QO,rlAg')
n———=<
Noc(g(),rug)

1
A—y<-— A+y (53)
T

holds for 0 < 6 <48, and T > 7,,, if both the values A and —A are §-possible.
Here, the following definition has been used:

Definition The value A € R is called §-possible if, given 6 > 0, there exists 74 s > 0 such
that

Moo(QO,r|Ag') >0

forall T > 74 5.8

8Because of the finiteness of 7, this can be the case even though uoo((_zo’r |A+) — 0, for T — 00, as it does
)

if the steady state ensemble average of 2, (£2)so say, does not belong to Ag’.
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It follows that, for A to be §-possible, ,uoo(fZOJ | A;) must decay with T more slowly than the

error term [£(8, 1, A, T) — 1 ln(e_go»fo‘gfoﬂlfoﬂ)QroytoﬁeA;] of (40). Indeed, given § > 0, a
pair (—A, A) and a fixed 7, the logarithmic term in the right hand side of (40) may either
take arbitrarily large values or be bounded, in the #), — oo limit. In the first case, because
A, § and t are fixed real numbers and |¢| < §, the corresponding divergence is reflected on

the measures pi,, (5_20,, | A5+)) and puy, (.(_20,1 | AE)’ one of which at least either tends to zero or
does not converge at all. Indeed, if for every R, 7, fo > O there is #, > fo such that

iy (Ro214)
<

_, (54)
I’LT() (QO.I |A;)

one has

1 _ 1
R<—s——, or uy(Qo:ly-)<— (55)
MI()(QO.T|A;) 0 A R

which corresponds either to MOO(S_ZO,, |,-) =0, or to the (1o non-measurability of 5_20,, [4--
In either case, —A is not §-possible, and similarly one may treat A. ’

Clearly, A is of no interest for a steady state FR, i.e. it does not belong to the domain
of the steady state £2-FR with tolerance y, if A and —A are not both §-possible; in a num-
ber of cases that domain may even be empty.” Therefore, we focus only on the A values
with bounded logarithmic term in (40), and let M (A, §, t) be the real number to which the
conditional average in (40) tends, in the £y — oo limit. We may then write

1 1 Hoo(20,c144) 1
A——-InMA,8,1)—§<—-In—— <A——InM(A,5,7)+38. (56)
T T I"LOO(QO,T|AE) T

If(1/t)InM (A, 3§, T) tends to zero, for the given A, § and growing 7, the steady state £2-FR
holds for A. This is the case if correlations decay, so that the thermodynamic behavior sets
in. In particular, if the £2-autocorrelation function is a §-function (as e.g. in Refs. [49, 50]),
one can write:

—020,. —2, —820.40— 2, —£2 -2
(e~ 010 I(]+r,21()+r>é[0V10+TeAgr=<e 0.1 ~Sig+r2ig 4y = (o700} (o™ g+ 204t 57

and
| = (e~ 050y = (o~ P00y (o~ Pu). (58)
which implies
(E—Qs.r) =1 foralls,¢ 9

because of the NonEquilibrium Partition Identity (17). Then, (1/7)In M (A, §, 7) identically
vanishes for all 7. This is an idealized situation and, indeed, the tests performed on molecular
dynamics systems,'” cf. Ref. [54], indicate that typically there exists a constant K (often not

9There are various reasons for which A or —A might not be in the domain of the steady state §2-FR. For
example, A could be larger than the largest value of 2, or there could be no fluctuations in the steady state
(cf. Appendix 2).

10The conditional average of (40) can, of course, be computed independently of the other terms in (40),
although this is not strictly necessary, because (40) is an exact identity.
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too far from 1), such that

0< 1 < (e~ 00~ Crragiry o =K, (0

910.10+1 GA; -
which may be understood as follows. In the first place, the conditional average is limited for
growing ty, if —A, A are §-possible, and equals 1 for t = 0. Then, if the §2-autocorrelation
decays with time scale t4;,'! one expects In K to be of order O(ty). Taking t sufficiently
larger than ¢)/, and letting ¢4 be a natural number dependent on the given A, one may write

— 820,40 —$2,
.10 tot+T.2t0+7 Y -
(e >.Q,0,,0+,6A5+

— (e*Q(),t()—cAtM 7QT()+T+(‘A)‘M,2)‘()+‘! . e_-(zro—cAtM.rO_910+r.r0+1+cArM) _ +
Qig,19+T €A

~ <e_-(20,10*CA1M . 6_910+r+calM.210+r> _ N
1,10+ €45

~~ (e*QO.rO—cAtM . e*Qt0+r+carM.2r0+r)

~ <e—90,10—cA1M)(e—910+r+cAtM.210+r> — (e_910+r+cAlM.210+r> (61)

with an accuracy which improves with increasing #, and 7, if ¢, is the number of Maxwell
times necessary to obtain the desired decorrelation at the chosen A. Indeed, one would
eventually obtain fy, T 3> caty.

If (61) holds, the 7y — oo limit of (e~ o++eatm 20+t is finite for all 8-possible pairs
(—A, A), and is insensitive to variations of t above a certain threshold. Indeed, let T =
T + ¢4ty and observe that

<e*910+f,2t0+r> — /6*910+f.270+r(r) fo(D)dI' = f e S0.10—cany (F)ftoJrf (rydr

i= (e P00cann ), e (62)

is the average of e~ 00-cav computed with the probability distribution obtained from the
evolution of the initial one, for the time ¢ = ¢y + 7. The value of this average may be esti-
mated noting that, for §-possible pairs (—A, A), and growing fy, it converges approximately
to the positive number M (A, §, 7), if (61) holds. Furthermore, for fixed # > 0 and for ¢
of the order of the Maxwell time, (¢~ “00-ca'm ), approaches its steady state mean value,
(e™20n0-cans) . which is equal to 1 at equilibrium for all 7 and c,. Then, for sufficiently
large fy and t = f + T, one may write

M(A,S,%) ~ (6—90.t0—910+r,210+r)(_2 ent X (e*QIOJrf.ZIOJrr) — (e_go”O’CA’M ),
10 f0+T =8

A (e”P00cann ) o (63)

thanks also to the fact that 7 is by itself larger than the decorrelation time. Because the left
hand side of (63) does not depend on f, while the right hand side does not depend on 7,
one concludes that further growths of #, or of T do not cause any substantial changes in
the conditional average in the middle. Close to equilibrium, this term should only have a

UThis time is called Maxwell time; its order of magnitude is that of the mean free time. The Maxwell
time expresses a physical property of the system and depends only mildly on the external field; usually,

tm(Fe) =ty (0) + O(F).
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correction of order O(Fez) to its equilibrium average, 1. Numerical studies show that this is
precisely what happens to the quantities in (60), (61), (62), [54].

Note that ¢4, may vary with A, as the set of trajectories involved in the conditional average
changes with A; ¢4 could then even diverge. However, close to equilibrium at least, the
existence of the transport coefficients implies that the conditional correlation functions must
not grow too much (cf. Appendix 2).

Note also that, for the steady state £2-FR to hold, it suffices that (1/7)In M (A, §, 7)
can be made as small as one wishes, by taking sufficiently large T and small §. Thus, it is
not necessary that (60) holds; it suffices that M (A, §, 7) grows less than exponentially fast
with 7, or even that it grows exponentially fast, with a rate which tends to zero when § does,
as in (42), where A = 0. However, the numerical tests performed so far indicate that (60) is
usually satisfied in the full range of numerically or experimentally accessible A’s.

If the £2-autocorrelation decays, and (60) holds with the condition on £2 replaced by an
equivalent one for another observable ¢, one obtains the

Steady State ¢-FR For sufficiently large t,

ln<e—9r0<r0+r )jl

. reAtr 1 Moo((l_bo,rbﬁ)
lim ottredy y<-In——2—
fo—0o0 T T Hoo((po,ruﬁ‘)
1n<e—9r0.10+1 -1 .
. Jtg+TEA
= om, Ty (6

This expression states that the ratio of the probabilities that q_bo,r € A} and q_bo,r € Ay is
determined by the average of the exponential of the values taken by £2 in the same time
intervals in which ¢ has average in A;. Because ¢ can be any odd observable, §2 appears
to be a rather special function of phase.

One may wonder how the above could be reconciled with the modifications of the steady
state A-FR suggested for a special kind of non-transitive dynamical systems [40, 48, 49]. As
explained in Appendix 2, (60) is not in contradiction to the scenarios of Refs. [40, 48, 49],
because the decay of correlations enjoyed by their dynamical systems concern the invariant
measures, while the conditional average in (60) is computed with respect to the initial mea-
sure. Therefore, the arguments of this section and those of Refs. [48, 49] are compatible,
since (60) would not hold if the cases of Refs. [40, 48, 49] were realized. The scenarios
under which the approximation (60) does not hold, appear however quite peculiar, and this
section explains why quite commonly the steady state £2-FR does hold: time reversibility
and the decay of the §2-autocorrelation characterize the most common deterministic models
of nonequilibrium statistical mechanics. Through the connection with the Maxwell time #,;,
this approach also justifies why the convergence times of the steady state £2-FR do not grow
with decreasing dissipation: the fact is that the £2-FR depends only on material properties of
the system, and these do not change much around equilibrium. This is quite different from
the case of the A-FR, whose convergence times increase as the driving is decreased, and
typically diverge in the equilibrium limit. As stated above, the calculations of this section
hold for any regular density f, i.e. for all possible dissipation functions §2, but the £2-FR
turns into the X-FR only when the initial distribution can be generated by single field free
trajectories, and A/ " holds.
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5 Conclusions

In this paper we have investigated the mechanisms underlying the validity of the transient
and steady state FR’s, following the prescriptions given by Evans and Searles over the last
decade. As already evidenced in the literature, the transient relations hold under very gen-
eral conditions; it suffices that the dynamics of the particle systems at hand be deterministic,
autonomous, and time reversal invariant. If the initial state is properly selected, the corre-
sponding £2 equals the energy dissipation rate X. Different initial densities f are allowed,
for any given dynamics S*; they are not completely equivalent, as in general they generate
different dissipation functions 2, but to some extent they are interchangeable (cf. (52)). The
transient relations describe the properties of evolving ensembles of systems, even in their
asymptotic form.

The steady state fluctuation relations need further assumptions. Firstly and quite obvi-
ously the system must relax to a nonequilibrium steady state. This requirement is nontrivial.
The necessary and sufficient conditions for this to occur are unknown, but necessarily in-
volve some loss of memory of the initial state, and the corresponding decay of correlations.
Certainly there are examples of dissipative particle systems in contact with a thermal heat
bath that do not relax to a steady state. Also, there may be distinct basins of attraction in M
with distinct steady state measures. For example if M is taken to be all of phase space with
an energy less than some bound and the initial ensemble is canonical, but the dynamics is
isoenergetic, then obviously there will be no mixing between trajectories that have different
initial energies, and the subensemble members will generate distinctly different energy de-
pendent steady states. Different steady states may coexist also when dissipation is too high
[55]. Transitivity (i.e. that a typical trajectory explores the whole phase space relevant to the
given dynamics) avoids these difficulties.

As a matter of fact, most of the molecular dynamics studies performed so far indicate that
convergence to a steady state independent of the initial phase is a very common situation.
This convergence is consistent with laboratory experiments where for systems with low
Reynolds/Raleigh numbers the nonequilibrium steady state (if such a state exists) is quite
independent of the initial starting state or the preparative history of the system. The low
shear rate viscosity of fluids is empirically observed to be a function of the temperature and
density (or pressure) of the fluid. The independence of the initial phase or preparative history
is the nonequilibrium analogue of the situation where at equilibrium thermodynamic free
energies are commonly observed to be thermodynamic state functions. Even at equilibrium
the conditions required for this to be the case are not known (they are violated in glassy
systems for example).

If a single steady state is approached, its statistics may be recovered from an individ-
ual trajectory, and this may have no knowledge of the initial ensemble f. This loss of
knowledge of the initial ensemble amounts to a decay of correlations, which may be fur-
ther weakened. It must be stressed that the decay of correlations required by the validity of
the £2-FR reduces to the §2-autocorrelation decay, with respect to the initial ensemble f.
As is well known, this is required, close to equilibrium, for the existence of the transport
coefficients.

In the case that transitivity and boundedness of £2 suffice to obtain the steady state
£2-FR (something that needs further study), we observe that these are much weaker con-
ditions than the Anosov assumption, which also implies the boundedness of the phase space
contraction rate.'? This is interesting, because one can name a number of cases which do

12Recall that the Anosov assumption was considered appropriate for the particle system of [6], in which
—A = §2, although §2 was not bounded.
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have bounded £2, like the isokinetic (or isoenergetic) hard particle systems; the isokinetic or
Nosé-Hoover thermostatted systems for heat current and shear flow systems with bounded
interaction potentials; the color conductivity isokinetic systems with unbounded potentials
etc. Transitivity, in turn, is almost always verified.

We note that in order to obtain a steady state X-FR, the initial distribution, f;, must be
obtainable from a single the field free evolution, and A/ I" must hold. These conditions are
easily obtainable for systems of physical interest.

The X'-FR’s directly refer to the dissipative fluxes or to quantities simply related to them,
rather than to the phase space contraction rate. This avoids the difficulty of justifying how
a A-FR can speak of the fluctuations of the entropy production rate. As discussed in [5],
these difficulties are more evident close to equilibrium, where one observes that the conver-
gence times of the A-FR typically diverge as the dissipative applied field decreases and the
system approaches equilibrium. This is due to the fact that A contains undesirable terms,
which have to average to zero. As one approaches equilibrium the dissipation decreases as
the square of the dissipative field while the undesirable terms remain constant (to leading
order in the field). Therefore, longer and longer averaging times are required before the
A-FR converges. It has been argued [33, 34] that the X'-FR can be obtained from the A-FR
because the time averages of X' and — A become equivalent in the long time limit. How-
ever, this argument can not explain the satisfaction of the X¥'-FR at physically accessible
times in non-isoenergetic systems at low fields. Moreover, if the Van Zon—Cohen picture
[25, 26] applies to deterministic particle systems, as argued in Refs. [5, 50, 56], the asymp-
totic equivalence between X'-FR and A-FR is restricted to a limited fraction of the possible
fluctuation values. As a matter of fact, ¥ equals —A only if f is uniform in M, which
requires M to be compact. When this is not the case, X' and A are substantially differ-
ent quantities, as even Ref. [50] shows. The difficulties with the weak field convergence
of A-FR make the derivation of Green—Kubo relations from A-FR, highly problematic [5].
Differently, if a relation for the dissipation is obtained independently, this difficulty is not
present. In particular, the convergence times are understood in terms of material proper-
ties related to known, physical properties of the system (e.g. the Maxwell time is related
to the infinite frequency shear modulus and the zero shear rate shear viscosity), and the
derivation of the Green—Kubo relations from the steady state X'-FRs is reasonably straight-
forward [5].

It is also important to consider the consistency of the results obtained in this manuscript
with those obtained for the axiom C systems postulated in Refs. [48, 49]. As discussed
in Appendix 2, these systems may enjoy the decay of correlations of all observables, with
respect to an invariant measure supported on a surface M, , of dimension lower than that of
the phase space M. Then, assuming as in Ref. [49], that A is proportional to the contraction
rate of volumes in M,, A, say, A should obey a modified FR. So far there is no direct
evidence, in particle systems, of the validity of that assumption (supported by numerical
studies of certain hydrodynamic models [27-29]). In fact, in the case considered in Ref. [16],
the dissipation is sufficiently high that the dynamics is not transitive yet the X-FR holds
without the modifications conjectured in [49]. In other words, our work and Refs. [48, 49]
usually consider different observables, and when they consider the same observable, it is not
necessary that they lead to the same conclusions of Refs. [48, 49]. If, on the other hand, the
treatment of Refs. [48, 49] applies, the decay of correlations of Sect. 4 is compatible with it,
as explained in Appendix 2, because it is referred to the initial measure, and not the invariant
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one.'? The energy dissipation ¥ remains related to A, not to A,, even if the steady state is
confined inside a lower dimensional manifold M,..

As pointed out by one of the anonymous referees, the existence of a unique stationary
measure may be considered a strong assumption, and the necessary and sufficient condition
required for it to hold are not known. Therefore, the study of Anosov systems constitutes
a natural starting point for the purpose of classifying the dynamical systems that verify
some kind of FR. The purpose of the present paper is different: it amounts to analyzing
systems which cannot be chosen at will, but are selected by physical conditions, in order to
understand further their properties as well as the physical mechanism responsible for FR’s to
hold in natural systems. We have found that time reversibility and ergodic consistency imply,
without further assumptions, a number of transient and asymptotic FRs (cf. Sects. 2 and 3),
which are amenable to experimental verification. If the system of interest does not reach a
unique steady state, assuming that it is Anosov does not help of course, but those relations
remain valid. When present, convergence to a unique steady state is the manifestation of a
certain decay of correlations of the observables, which typically are required to relax to a
steady state. The approach proposed in this paper thus makes it clear that the details of the
microscopic dynamics (like the very strong hypothesis of uniform hyperbolicity) do not play
any role in the validity of the FR’s, as appropriate for thermodynamic relations. The class of
dynamical systems which obey (60) cannot be determined, however, by this approach.

These facts may help in developing further the theory of nonequilibrium phenomena, as
the derivation of the novel relations given above indicates.
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Appendix 1

Using the general definition of the dissipation function (13), it can be shown that the instan-
taneous value of the dissipation function is directly related to the instantaneous dissipative
Sflux for a wide class of systems. Here we consider three cases: isoenergetic, isokinetic and
Nosé-Hoover thermostatted dynamics.

A general form of the equations of motion for a field-driven N-particle, thermostatted

nonequilibrium system is
q =p;/m+C(I)-F,,
. (65)
p; =F, +D:(I") - F, —ap;

where F, is the applied field that is coupled to the system via the phase functions C; (/") and
D;(I"). The term —ap; is a deterministic, time reversible term used to add or remove heat
from the system [41]. The adiabatic equations of motion

q; =p;/m+Ci(I') - Fe,

66
pi =F,+D;(I') -F, (€0

130ne should also observe that (40) is exact, hence cannot lead to any contradiction about reversible dynam-
ical systems.
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simply lack the thermostatting term. If (66) are Hamiltonian, the phase space expansion rate
A obviously vanishes, a condition referred to as adiabatic incompressibility of phase space,
AIT [41], but AIT" may hold even if the general adiabatic equations are not Hamiltonian.
Here, for simplicity, we concentrate on systems which satisfy A1, because their dissipative
flux and dissipation function are simply related. In the other cases, the relationship between
dissipative flux and dissipation function is only more complicated. We also assume that the
initial distribution of phases f, may in principle be generated by a single field-free (F, = 0)
thermostatted dynamics. By this we mean that f; must not only be preserved by the equi-
librium dynamics, but also that a single field free trajectory may explore all of its support.
In other words, that this support is not the union of disjoint invariant sets, like the constant
energy surfaces corresponding to different initial energies of Hamiltonian systems. This is
consistent with nonlinear response theory that shows that if one is interested in the statistics
of the physically relevant steady state observables, f, should be that which corresponds to
the field free dynamics [41, 57]. The possible difficulties that might be encountered if f is
not selected to be the distribution function generated by the field free dynamics can easily be
seen by considering the distribution of ¢y , along an equilibrium trajectory. In this case the
correct physical picture requires the right hand side of (39) to be 1 for all A, 7y, 6 and 7. This
can only be the case if £2(I") = 0 for all I". Using (34), this implies that fo(S{I") = £, (S§I")
under the field free dynamics S}, and that fy = f, must be preserved by the field free dynam-
ics. Note that a single trajectory can’t possibly generate the ensemble in physically relevant
times, in any system made of more than a few particles, but it may do it, in principle, allow-
ing it to evolve for exceedingly long. This is needed for the possible initial equilibrium state
to be uniquely determined.

In general, the dissipative flux, J, is obtained from the adiabatic time-derivative of the
internal energy, Hy = ZlN=1 % + @(q), i.e. from the derivative of the internal energy under
the dynamics of (66):

N
Hé’d=—Z<%-Di—Ff-c,-)-Fe i=-JV-F,, (67)
i=1

while the full dynamics of (65) yields

N
Hy=—JV-F, —aY PP _jy.§ _2ka (68)
m

i=1

were K is the kinetic energy of the system. Consider now three widely used deterministic,
reversible thermostatting methods.
e Gaussian isoenergetic (ergostatted) system. In this case Hy is fixed, i.e. Hy =0, and
(68) gives
ryv-F,
a(ry =3V -Fe (69)
2K(I)

For the ergostatted system described by equations (65), the phase space expansion rate
is,

N
AT = VT = Z(aca”;_r) + 81)5;”) F. — dNa(I') + Oy (1)
i=1 i i

AL _dNa(I) + On(1) (70)
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where AIT is used to obtain the final equality, and Oy (1) is a correction which is or-
der 1 in N. The Oy(1) term can be explicitly determined from the partial derivative of the
Gaussian ergostatting term with respect to p. The equilibrium phase space distribution func-
tion is microcanonical on a surface Hy =const, hence f(iS'I") = f(S°I") = f(I"), and
(13) yields:

QU =—Ao. () (71)
for all 7, so
LUIN=—A")=dNa(l")+ Oy(1)==J(I") -F.B(I")V + Oy(1) (72)

where B(I") = (dN —d — 1)/(2K(I")).
e Gaussian isokinetic system. In this case the kinetic energy is fixed K(I") = K¢ =
(dN —d — 1)kgT = (dN —d — 1)/B. Equation (68) can therefore be used to show,

_(Hy(D) +J(IN)V -F.)B
dN —d -1

a(lN) = (73)

while the phase space expansion rate A is still expressed by (70) to order N, with a differ-
ent Oy (1) term. The equilibrium phase space distribution function takes the form f(I") ~

e PH§(K(I') — Ky), on a surface K (I") =const, hence f(I")/f(iSTI) = ef o Ho(s)ds
and (13) leads to:

201 =P for Hy(I(s))ds — Ao (I') = —(J - Fe)o . VB + On(1) (74)
for all 7. Combining this with (73) and (70), one obtains
X()y=-JI)-FVB+ 0xQ). (75)
e Nosé-Hoover thermostat. In this case, (65) are supplemented with the equation,

d:é(ﬂ((l”)—deBT) (76)

where Q is a constant related to the relaxation time of the thermostat, and T is the imposed
average temperature. In this case,

a(I") = —(Ho(I') + J(I")V -F,) /2K (I")) )
and
AN =V -T + AN (78)
Jo

The equilibrium phase space distribution function is the Nosé—Hoover extended canoni-
cal distribution f(I") ~ e PH0+300) ‘hence £(I")/f(iSTT) = ef Ji Hol )+0addds g (13)
can be used to show that:

Yty =p /0 (Ho(s) + Qad)ds — Ag (I = —J " Fo)o. VB (79)

for all 7, and then

() =-JUI")-F.VB. (80)
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Therefore, for field driven nonequilibrium systems whose equations of motion satisfy AIT",
the dissipation function and the dissipative flux are simply related. In fact, for thermostatted
systems with a constant field, X (I") = kJ (I") where k is a constant.

It is straightforward to show that the same expressions (72), (75), (80) can be obtained
even if only a fraction of the system’s particles is subjected to a thermostat (e.g. the wall
particles), see [13, 14] for example. Furthermore, if the walls are large, the results are not
sensitive to the details of the thermostatting mechanism [15].

Appendix 2

The derivation of the steady state relations from transient ones needs a careful analysis of
the conditional average

— 82 1 79[ T, 21 T
(e 019 . o~ 10 +T. 210+ >-(_2r0,10+r€A5+ 81)
which appears in (27), (40), and of its limit
1 —£2 1 79[ 7,2t0+7
M(A,5.7)= lim (&0 e Ty, (82)

which is needed for the transient states (,, to eventually reach the steady state (1. In par-
ticular, M (A, §, T) must exist and be positive for T larger than a certain 7,4 s, for the pair
(—A, A) to be §-possible, i.e. for fluctuations of size close to A to occur, and for A to be in
the domain of the fluctuation relation with some tolerance y > §.

As observed in the text, (27) and (40) are exact, hence cannot contradict any correct re-
sult on deterministic, reversible dynamical systems. The question is whether one can extract
sufficient information from them, that they can be of practical use for the description of the
statistics of steady state trajectories. This requires that either the dynamics of interest be
explicitly given, or that the possible situations be explored. In Sect. 4, we have considered
the possibility that the §2-autocorrelation decays in time, as the most common for the deter-
ministic reversible particle models of nonequilibrium fluids. In fact, less is needed for the
steady state £2-FR to hold for A; it suffices that M (A, §, ) does not grow too fast with t:
subexponential growths, and exponential growths with rate not larger than é (as for A =0)
are all acceptable.

In the linear regime, the decay of correlations in the steady state can be well approxi-
mated by their decay at equilibrium, and for this reason, in the linear regime, the transport
coefficients are given by the integral of the equilibrium time correlation function, multiplied
by the field [41]. Lack of decay of correlations of £2 corresponds to the non-existence of the
transport coefficient associated with £2. Further away from equilibrium, nonlinear response
theory applies. Now the time correlation function is still determined with respect to the ini-
tial measure p, but the dynamics used to compute the nonlinear transport coefficients is the
nonequilibrium one (cf. the Transient Time Correlation Function [41]). This is analogous to
what is done in calculations of M (A, §, t), and if the nonlinear transport coefficients exist
in the nonlinear regime, then there should be a decay of the §2-autocorrelation, with respect
to the equilibrium measure. Note also that the growth of t increases the separation of the
end of the integral in the first exponential of (81) from the beginning of the integral in the
second exponential, hence that the growth of t should contribute to the decorrelation.

Therefore, it looks quite plausible that, in most cases, one of the above considerations
on the decay of correlations be satisfied. There is, however, one competing effect, which
may become important in particular circumstances: the set of trajectories over which the
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conditional average (81) is computed changes with 7, and this may balance the decorrelation
phenomena in some cases.

To illustrate these facts, consider a simple model that has been discussed in connection
to the fluctuation theorems in the past [40], and apply the procedure described in this man-
uscript to that example. The model consists of a particle moving in empty space, under the
action of a constant external force F, and a Gaussian thermostat:

q=p,
Fe'p
PP

p:Fe_

where the kinetic energy K = p - p/2 is a constant of motion. The dynamics of this particle
is rather simple: for initial conditions with p pointing in the direction opposite to F,, p is a
constant of motion; for all other initial conditions the direction of p tends to the direction
of F,, while the magnitude of p, +/2K , is constant. The treatment of Sects. 2 and 3 applies to
this system, since it is reversible and an initial distribution that is ergodically consistent with
the final distribution can be selected. However there are various reasons why the treatment
in Sect. 4 cannot be applied to produce a steady state X-FR in this case. For instance, the
distribution generated by the field free equations of motion is not ergodically consistent
with the steady state dynamics (see Appendix 1). In addition, the attractor is a fixed point in
P-space, and the time-dependence of q is irrelevant; so, for any §2 that is a function of p only,
there are no steady state fluctuations - that is for small §, no pair (—A, A) is §-possible, hence
that the domain of the steady state £2-FR is empty. The theory outlined in this paper also
anticipates these facts, since correlations for any phase function do not decay, and therefore
the term M diverges in the 7y — oo limit. In particular, selecting the dissipation function that
would correspond to a uniform initial distribution, we obtain 2 = —A = (d — F, - p/2K
where d is the number of dimensions in configuration space. The range of values of this £2
is [—(d — 1)v/2K|F.|, (d — 1)v/2K |F,|] and any smooth probability distribution in it (e.g.
the uniform one) evolves in time in such a way that

n—oo | 0 if (d — 1)V2K|F, A—65,A4+9),
{ if (d — 1)V2K|Fe| ¢ ( +5) )

Wiy (20,2 4+) —>
’ s 1 if(d— DV2K|Fe| € (A—8, A +59).

As all trajectories, except those with initial condition p(0) = —(d — +2KF, /|F.|, tend to
have 2 = (d — 1)«/% F./|F.|, this means that the integrals §2y;, and §2; ;2,4 diverge
linearly with #,.

Therefore, (60) does not apply in this case. This will be the case for any steady state
that has no fluctuations. Nevertheless, the transient and asymptotic relations remain valid
for the evolving ensembles. The transient £2-FR expresses the rate at which the initial prob-
ability of observing —A vanishes, compared to the initial probability of A, and the £2,.-FR
expresses the corresponding asymptotic rate; but the domain of the steady state §2-FR is
empty. A similar situation, with no fluctuations of opposite sign in the steady state, may
be produced in more realistic models by applying extremely high fields, making the motion
ordered. In these cases, the domain of the steady state £2-FR would also be empty. However,
intermediate situations are possible, like those of Ref.[16], in which the attractors have small
dimension, but the initial correlations decay, and the steady state £2-FR holds.

References [48, 49] consider systems with steady states confined within manifolds M,
of dimension smaller than M, whose volumes fluctuate in time, so that the corresponding
phase space contraction rate, A,, obeys the standard fluctuation relation. In these systems,
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correlations of all observables decay with respect to the invariant measure (o, supported
on M,. Furthermore, if the phase space contraction rate A, in the space of the field-free
dynamics M, is proportional to A,, as assumed in [49], a modified FR holds for it, which
can be expressed as

1 l“/oo(/io,ruzr)
CA—y<-ln———<cA+y (84)
T MOO(AO,1|A6*)

with ¢ < 1. The relevance of such a possibility for particle systems is not obvious, but no
difficulty emerges with the theory developed here, since the decay of correlations with re-
spect to /4o, does not imply the decay of correlations with respect to a non-singular measure
supported on M. Many different scenarios are possible, and should be analyzed case by
case, but this goes beyond the purpose of the present paper. Here it suffices to observe that
no scenario that can be realized can contradict the framework of the present paper; to the
contrary, it could be explained in it, through the analysis of the conditional average (81).
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